Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Gondwana Res ; 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-2246265

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic has severely crippled the economy on a global scale. Effective and accurate forecasting models are essential for proper management and preparedness of the healthcare system and resources, eventually aiding in preventing the rapid spread of the disease. With the intention to provide better forecasting tools for the management of the pandemic, the current research work analyzes the effect of the inclusion of environmental parameters in the forecasting of daily COVID-19 cases. Three univariate variants of the long short-term memory (LSTM) model (basic/vanilla, stacked, and bi-directional) were employed for the prediction of daily cases in 9 cities across 3 countries with varying climatic zones (tropical, sub-tropical, and frigid), namely India (New Delhi and Nagpur), USA (Yuma and Los Angeles) and Sweden (Stockholm, Skane, Uppsala and Vastra Gotaland). The results were compared to a basic multivariate LSTM model with environmental parameters (temperature (T) and relative humidity (RH)) as additional inputs. Periods with no or minimal lockdown were chosen specifically in these cities to observe the uninhibited spread of COVID-19 and explore its dependence on daily environmental parameters. The multivariate LSTM model showed the best overall performance; the mean absolute percentage error (MAPE) showed an average of 64% improvement from other univariate models upon the inclusion of the above environmental parameters. Correlation with temperature was generally positive for the cold regions and negative for the warm regions. RH showed mixed correlations, most likely driven by its temperature dependence and effect of allied local factors. The results suggest that the inclusion of environmental parameters could significantly improve the performance of LSTMs for predicting daily cases of COVID-19, although other positive and negative confounding factors can affect the forecasting power.

2.
Gondwana Res ; 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-2243366

ABSTRACT

The current COVID-19 pandemic has underlined the importance of learning more about aerosols and particles that migrate through the airways when a person sneezes, coughs and speaks. The coronavirus transmission is influenced by particle movement, which contributes to the emergence of regulations on social distance, use of masks and face shield, crowded assemblies, and daily social activity in domestic, public, and corporate areas. Understanding the transmission of aerosols under different micro-environmental conditions, closed, or ventilated, has become extremely important to regulate safe social distances. The present work attempts to simulate the airborne transmission of coronavirus-laden particles under different respiratory-related activities, i.e., coughing and speaking, using CFD modelling through OpenFOAM v8. The dispersion coupled with the Discrete Phase Method (DPM) has been simulated to develop a better understanding of virus carrier particles transmission processes and their path trailing under different ventilation scenarios. The preliminary results of this study with respect to flow fields were in close agreement with published literature, which was then extended under varied ventilation scenarios and respiratory-related activities. The study observed that improper wearing of mask leads to escape of SARS-CoV-2 containminated aerosols having a smaller aerodynamic diameter from the gap between face mask and face, infecting different surfaces in the vicinity. It was also observed that aerosol propagation infecting the area through coughing is a faster phenomenon compared to the propagation of coronavirus-laden particles during speaking. The study's findings will help decision-makers formulate common but differentiated guidelines for safe distancing under different micro-environmental conditions.

3.
Gondwana Res ; 2022 Aug 02.
Article in English | MEDLINE | ID: covidwho-2232142

ABSTRACT

The high rate of transmission of the COVID-19 virus has brought various types of disinfection techniques, for instance, hydrogen peroxide vaporization, microwave generating steam, UV radiation, and dry heating, etc. to prevent the further transmission of the virus. The chemical-based techniques are predominantly used for sanitization of hands, buildings, hospitals, etc. However, these chemicals may affect the health of humans and the environment in unexplored aspects. Furthermore, the UV lamp-based radiation sanitization technique had been applied but has not gained larger acceptability owing to its limitation to penetrate different materials. Therefore, the optical properties of materials are especially important for the utilization of UV light on such disinfection applications. The germicidal or microorganism inactivation application of UV-C has only been in-use in a closed chamber, due to its harmful effect on human skin and the eye. However, it is essential to optimize UV for its use in an open environment for a larger benefit to mitigate the virus spread. In view of this, far UV-C (222nm) based technology has emerged as a potential option for the sanitization in open areas and degradation of microorganisms present in aerosol during the working conditions. Hence, in the present review article, efforts have been made to evaluate the technical aspects of UV (under the different spectrum and wavelength ranges) and the control of COVID 19 virus spread in the atmosphere including the possibilities of the human body sanitization in working condition.

4.
Proceedings of the Indian National Science Academy Part A, Physical Sciences ; : 1-14, 2022.
Article in English | EuropePMC | ID: covidwho-2125633

ABSTRACT

Concerning rapid resource depletion and the negative effects of climate change, the adaptation of Circular Economy (CE) strategies in the environmental sector is gaining global recognition and application. This study forecasts the energy demand and emissions scenarios for a circular economy-dependent green energy transition, based on learnings from the forced situation caused by the COVID-19 pandemic. This study focuses on the industrial, domestic, and transportation sectors of the National Capital Territory (NCT) of India i.e., Delhi. Implementation of circular economy strategies helps in limiting the impacts of rising energy demand by shifting towards green fuels and biofuels. The data related to energy demand, consumption, percentage share and growth, etc., was gathered and incorporated in Low Emission Analysis Platform model to generate three scenarios i.e., business as usual, circular economy (CE), and pandemic scenario to compare the outputs of energy demand and emissions in terms of CO2 and particulate matter. The results for the CE scenario, for the year 2020 to 2040 shows that there will be a reduction of 158.2 kt PM2.5 emissions (24.3%) and 540 Mt CO2 emissions (49%) as well as a reduction of 203 Mtoe total energy usage (49.3%) as compared to the business-as-usual scenario. The COVID-19 pandemic had a significant impact on societal and commercial activities in the concerned city. Activities came to a standstill during the COVID-19 pandemic, but the same had significantly improved the environment. This unusual forced situation of COVID-19 lockdown produced a unique scenario which shows that the total extra reduction in energy demand of 46%, CO2 and PM2.5 emissions of 45–60% could be achieved by 2040, as compared to CE scenario. Graphical Supplementary Information The online version contains supplementary material available at 10.1007/s43538-022-00137-7.

5.
Environ Dev Sustain ; 23(4): 6408-6417, 2021.
Article in English | MEDLINE | ID: covidwho-2075471

ABSTRACT

The present work estimates the increased risk of coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 by establishing the linkage between the mortality rate in the infected cases and the air pollution, specifically Particulate Matters (PM) with aerodynamic diameters ≤ 10 µm and ≤ 2.5 µm. Data related to nine Asian cities are analyzed using statistical approaches, including the analysis of variance and regression model. The present work suggests that there exists a positive correlation between the level of air pollution of a region and the lethality related to COVID-19, indicating air pollution to be an elemental and concealed factor in aggravating the global burden of deaths related to COVID-19. Past exposures to high level of PM2.5 over a long period, is found to significantly correlate with present COVID-19 mortality per unit reported cases (p < 0.05) compared to PM10, with non-significant correlation (p = 0.118). The finding of the study can help government agencies, health ministries and policymakers globally to take proactive steps by promoting immunity-boosting supplements and appropriate masks to reduce the risks associated with COVID-19 in highly polluted areas.

7.
Environ Dev Sustain ; 23(4): 5846-5864, 2021.
Article in English | MEDLINE | ID: covidwho-1906261

ABSTRACT

Originating from Wuhan, China, COVID-19 is spreading rapidly throughout the world. The transmission rate is reported to be high for this novel strain of coronavirus, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to its predecessors. Major strategies in terms of clinical trials of medicines and vaccines, social distancing, use of personal protective equipment (PPE), and so on are being implemented in order to control the spread. The current study concentrates on lockdown and social distancing policy followed by the Indian Government and evaluates its effectiveness using Bayesian probability model (BPM). The change point analysis (CPA) done through the above approach suggests that the states which implemented the lockdown before the exponential rise of cases are able to control the spread of the disease in a much better and efficient way. The analysis has been done for states of Maharashtra, Gujarat, Madhya Pradesh, Rajasthan, Tamil Nadu, West Bengal, Uttar Pradesh, and Delhi as union territory. The highest value of Δ (delta) is reported for Gujarat and Madhya Pradesh with a value of 9.6 weeks, while the lowest value is 4.7, evidently for Maharashtra which is the worst affected. All of the states indicate a significant correlation (p < 0.05, tstat > tcritical) for Δ, i.e., the difference in the time period of CPA and lockdown with cases per population (CPP) and cases per unit area (CPUA), while weak correlation (p < 0.1 and tstat < tcritical) is exhibited by delta and cases per unit population density (CPD). For both CPP and CPUA, tstat > tcritical indicating a significant correlation, while Pearson's correlation indicates the direction to be negative. Further analysis in terms of identification of high-risk areas has been studied from the Voronoi approach of GIS based on the inputs from BPM. All the states follow the above pattern of high population, high case scenario, and the boundaries of risk zones can be identified by Thiessen polygon (TP) constructed therein. The findings of the study help draw strategic and policy-driven response for India, toward tackling COVID-19 pandemic.

8.
Environ Dev Sustain ; 23(5): 6681-6697, 2021.
Article in English | MEDLINE | ID: covidwho-1681222

ABSTRACT

COVID-19 is a highly infectious disease caused by SARS-CoV-2, first identified in China and spread globally, resulting into pandemic. Transmission of virus takes place either directly through close contact with infected individual (symptomatic/asymptomatic) or indirectly by touching contaminated surfaces. Virus survives on the surfaces from few hours to days. It enters the human body through nose, eyes or mouth. Other sources of contamination are faeces, blood, food, water, semen etc. Parameters such as temperature/relative humidity also play an important role in transmission. As the disease is evolving, so are the number of cases. Proper planning and restriction are helping in influencing the trajectory of the transmission. Various measures are undertaken to prevent infection such as maintaining hygiene, using facemasks, isolation/quarantine, social/physical distancing, in extreme cases lockdown (restricted movement except essential services) in hot spot areas or throughout the country. Countries that introduced various mitigation measures had experienced control in transmission of COVID-19. Python programming is conducted for change point analysis (CPA) using Bayesian probability approach for understanding the impact of restrictions and mitigation methods in terms of either increase or stagnation in number of COVID-19 cases for eight countries. From analysis it is concluded that countries which acted late in bringing in the social distancing measures are suffering in terms of high number of cases with USA, leading among eight countries analysed. The CPA week in comparison with date of lockdown and first reported case strongly correlates (Pearson's r = - 0.86 to - 0.97) to cases, cases per unit area and cases per unit population, indicating earlier the mitigation strategy, lesser the number of cases. The overall paper will help the decision makers in understanding the possible steps for mitigation, more so in developing countries where the fight against COVID-19 seems to have just begun.

9.
Environ Sci Pollut Res Int ; 28(32): 44522-44537, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1182288

ABSTRACT

A novel coronavirus disease (COVID-19) continues to challenge the whole world. The disease has claimed many fatalities as it has transcended from one country to another since it was first discovered in China in late 2019. To prevent further morbidity and mortality associated with COVID-19, most of the countries initiated a countrywide lockdown. While physical distancing and lockdowns helped in curbing the spread of this novel coronavirus, it led to massive economic losses for the nations. Positive impacts have been observed due to lockdown in terms of improved air quality of the nations. In the current research, ten tropical and subtropical countries have been analysed from multiple angles, including air pollution, assessment and valuation of health impacts and economic loss of countries during COVID-19 lockdown. Countries include Brazil, India, Iran, Kenya, Malaysia, Mexico, Pakistan, Peru, Sri Lanka, and Thailand. Validated Simplified Aerosol Retrieval Algorithm (SARA) binning model is used on data collated from moderate resolution imaging spectroradiometer (MODIS) for particulate matters with a diameter of less than 2.5 µm (PM2.5) for all the countries for the month of January to May 2019 and 2020. The concentration results of PM2.5 show that air pollution has drastically reduced in 2020 post lockdown for all countries. The highest average concentration obtained by converting aerosol optical depth (AOD) for 2020 is observed for Thailand as 121.9 µg/m3 and the lowest for Mexico as 36.27 µg/m3. As air pollution is found to decrease in the April and May months of 2020 for nearly all countries, they are compared with respective previous year values for the same duration to calculate the reduced health burden due to lockdown. The present study estimates that cumulative about 100.9 Billion US$ are saved due to reduced air pollution externalities, which are about 25% of the cumulative economic loss of 435.9 Billion US$.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
10.
Environ Dev Sustain ; 23(6): 9418-9432, 2021.
Article in English | MEDLINE | ID: covidwho-871510

ABSTRACT

Amid COVID-19, there have been rampant increase in the use of Personal Protective Equipment (PPE) kits by frontline health and sanitation communities, to reduce the likelihoods of infections. The used PPE kits, potentially being infectious, pose a threat to human health, terrestrial, and marine ecosystems, if not scientifically handled and disposed. However, with stressed resources on treatment facilities and lack of training to the health and sanitation workers, it becomes vital to vet different options for PPE kits disposal, to promote environmentally sound management of waste. Given the various technology options available for treatment and disposal of COVID-19 patients waste, Life Cycle Assessment, i.e., cradle to grave analysis of PPE provides essential guidance in identifying the environmentally sound alternatives. In the present work, Life Cycle Assessment of PPE kits has been performed using GaBi version 8.7 under two disposal scenarios, namely landfill and incineration (both centralized and decentralized) for six environmental impact categories covering overall impacts on both terrestrial and marine ecosystems, which includes Global Warming Potential (GWP), Human Toxicity Potential (HTP), Eutrophication Potential (EP), Acidification Potential (AP), Freshwater Aquatic Ecotoxicity Potential (FAETP) and Photochemical Ozone Depletion Potential (POCP). Considering the inventories of PPE kits, disposal of PPE bodysuit has the maximum impact, followed by gloves and goggles, in terms of GWP. The use of metal strips in face-mask has shown the most significant HTP impact. The incineration process (centralized-3816 kg CO2 eq. and decentralized-3813 kg CO2 eq.) showed high GWP but significantly reduced impact w.r.t. AP, EP, FAETP, POCP and HTP, when compared to disposal in a landfill, resulting in the high overall impact of landfill disposal compared to incineration. The decentralized incineration has emerged as environmentally sound management option compared to centralized incinerator among all the impact categories, also the environmental impact by transportation is significant (2.76 kg CO2 eq.) and cannot be neglected for long-distance transportation. Present findings can help the regulatory authority to delineate action steps for safe disposal of PPE kits.

11.
Sci Total Environ ; 749: 141486, 2020 Dec 20.
Article in English | MEDLINE | ID: covidwho-693560

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in unprecedented disease burden, healthcare costs, and economic impacts worldwide. Despite several measures, SARS-CoV-2 has been extremely impactful due to its extraordinary infection potential mainly through coronavirus-borne saliva respiratory and droplet nuclei of an infected person and its considerable stability on surfaces. Although the disease has affected over 180 countries, its extent and control are significantly different across the globe, making it a strong case for exploration of its behavior and dependence across various environmental pathways and its interactions with the virus. This has spurred efforts to characterize the coronavirus and understand the factors impacting its transmission and survival such as aerosols, air quality, meteorology, chemical compositions and characteristics of particles and surfaces, which are directly or indirectly associated with coronaviruses infection spread. Nonetheless, many peer-reviewed articles have studied these aspects but mostly in isolation; a complete array of coronavirus survival and transmission from an infected individual through air- and water-borne channels and its subsequent intractions with environmental factors, surfaces, particulates and chemicals is not comprehensively explored. Particulate matter (PM) is omnipresent with variable concentrations, structures and composition, while most of the surfaces are also covered by PM of different characteristics. Learning from the earlier coronavirus studies, including SARS and MERS, an attempt has been made to understand the survival of SARS-CoV-2 outside of the host body and discuss the probable air and water-borne transmission routes and its interactions with the outside environment. The present work 1) Helps appreciate the role of PM, its chemical constituents and surface characteristics and 2) Further identifies gaps in this field and suggests possible domains to work upon for better understanding of transmission and survival of this novel coronavirus.


Subject(s)
COVID-19 , Coronavirus Infections , Coronavirus , Coronavirus Infections/epidemiology , Humans , SARS-CoV-2 , Water
12.
Air Qual Atmos Health ; 13(6): 683-694, 2020.
Article in English | MEDLINE | ID: covidwho-592008

ABSTRACT

Air pollution (AP) is one of the major causes of health risks as it leads to widespread morbidity and mortality each year. Its environmental impacts include acid rains, reduced visibility, but more importantly and significantly, it affects human health. The price tag of not managing AP is seen in the rise of chronic obstructive pulmonary disease (COPD), cardiovascular disease, and respiratory ailments like asthma and chronic bronchitis. But as the world battles the corona pandemic, COVID-19 lockdown has abruptly halted human activity, leading to a significant reduction in AP levels. The effect of this reduction is captured by reduced cases of morbidity and mortality associated with air pollution. The current study aims to monetarily quantify the decline in health impacts due to reduced AP levels under lockdown scenario, as against business as usual, for four cities-Delhi, London, Paris, and Wuhan. The exposure assessment with respect to pollutants like particulate matter (PM2.5 and PM10), NO2, and SO2 are evaluated. Value of statistical life (VSL), cost of illness (CoI), and per capita income (PCI) for disability-adjusted life years (DALY) are used to monetize the health impacts for the year 2019 and 2020, considering the respective period of COVID-19 lockdown of four cities. The preventive benefits related to reduced AP due to lockdown is evaluated in comparison to economic damage sustained by these four cities. This helps in understanding the magnitude of actual damage and brings out a more holistic picture of the damages related to lockdown.

SELECTION OF CITATIONS
SEARCH DETAIL